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Abstract 

Some concepts of convergence used in mathematical chemistry are briefly reviewed: 
number convergence, uniform and non-uniform funcüon convergence, convergence in 
norm and binary product, operator convergence, computer convergence, etc. Some proper- 
ties of the abstract Hilbert space and some of its realizaaorts in mathematical chemistry are 
discussed. Finally, it is pointed out that the scattering wave funcaons of importance in the 
theory of chemical reactions are limit points of theL 2 Hilbert space - not in the norm, but 
in the sense of a non-uniform point-by-point convergence, which is of essential value in 
practical applications. 

1. Introduction 

In various parts of  mathematical chemistry, one offen deals with infinite 
sequences of  numbers, objects, etc., and their limits, and it is evident that the concept 
of  convergence is fundamental in this connection. In their work, most theoreücal 
chemists take these convergence properties for granted, and they are seldom discussed. 
The remarkable fact is that quite a few different convergence concepts are used in 
various connections, and some of the most important ones will be briefly reviewed in 
this paper. 

1.1. NUMBER CONVERGENCE 

Let us consider an infmite sequence of real or complex numbers a 1, a z, a 3, 
a 4 . . . . .  a n . . . . .  Such a sequence is said to have a limit a, provided that for every 
positive number e - however small - there exists a mapping e --~ N(e) such that, 
whenever n > N(e), one has for the absolute value II of  the difference: 

la - al < e, n > N(e). (1) 
n 

In pure mathemaücs, one proves the existence of convergence by giving at least a rough 
estimate of  the function N(e). Since one usually does not know the limit a in advance,  
relation (1) is often replaced by Cauchy's necessary and sufficient criterion for con- 
vergence: 
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la - a l < e, m > n > N(e),  (2) 
m n 

which was formulated in the first half of the 18th century. In 1872, it was pointed out 
by Cantor and Dedekind that irrational numbers had not been properly defined in 
mathematics, and that so-called Cauchy sequences of rational numbers satisfying (2) 
could be used for this purpose. A simple example of number convergence is given by 
the relation 

n 

lim ~ ( -1)k(1/k)  = log2.  (3) 
n--~~k= 1 

1.2.  FUNCTIONAL CONVERGENCE 

Let us next consider a series of real or complex functions f l(x),  f2(x), 
f3(x) . . . . .  fn(x) . . .  of the variable x. Such a sequence is said to have a limit function 
f ( x ) ,  providecl that there exists a function N(e, x) such that 

Ifn(x) - f ( x ) l  < e, n > N(e, x). (4a) 

Since the function N depends also on the value of the variable x, one speaks of point- 
by-point convergence. If the function N is independent of the value of x in a certain 
interval [a, b], one speaks of uniform convergence in that interval: 

Ifn(x) - f ( x ) l  < e, n > N(e). (4b) 

2. Some properties of the abstract Hilbert space and its realizations 

2.1. THE AXIOMS OF THE ABSTRACT HILBERT SPACE 

When modem quantum theory was developed in 1925-26 [1], it was given three 
completely different formulations. In his wave mechanics, Schrödinger interpreted the 
basic physical observables x and p as operators, whereas in the matrix mechanics 
developed by Heisenberg, Bom, and Jordan, they were interpreted as matrices. In 
Dirac's abstract formulation, they were finally considered as content-less non- 
commutaüve quantities called q-numbers. The only thing common for the three formu- 
laüons seemed to be the commutation relaüon p x  - xp  = h/2tci. The three different 
approaches were unified by von Neumann [2] by introducing the concept of the abstract 
Hilbert space, which has tumed out to be one of the most important tools in modem 
quantum theory. 

An abstract Hilbert space is a linear space A = { f } having a binary product (f l  g) 
which satisfies the following four axioms: 
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axiom 1: ( f l &  + g2) = ( f l & ) + ( f l g 2 ) '  (5) 

axiom 2: ( f lg.ot)  = ( f l g ) a ,  (6) 

axiom 3: ( g l f )  = ( f lg)* ,  (7) 

axiom 4: ( f l f )  >_ O, and =0 if and only if f =  0. (8) 

The first two axioms indicate that the binary product is linear in the second position, the 
third that it is Hermitian symmetric, and the fourth that the space is positive defmite. 
Since one has the property ( f .  a l g )  = a*( f lg ) ,  one sometimes says that the first 
position is anti-linear. It is further convenient to introduce the norm or length Ilfll of  an 
e l emen t fby  the relation Ilfll = ( f l f )  m. By using the axioms, one immediately obtains 
Schwarz's inequality and the related triangular inequality: 

[ ( f l g ) [  < Ilfll.llgll, (9) 

[ l l f l l - I lg l l [  < I I f+g l l  < I lf l l+llgll .  (10) 

2.2. CONVERGENCE IN THE NORM 

An infinite series of elements f l , f2 , f  3 . . . . .  f,, . . . .  in the linear space A = { f  } is 
said to be convergent in the norm toward the limit element f if 

Ilfn - f l l  < ~, whenever n > N(e). (11) 

The seiles is said to be a Cauchy sequence, if Ilfm -fnll < t~, whenever m > n > N(e), and 
every such sequence may be used to define the limit element f In addition, one also 
speaks of  binary product convergence of the sequence {f,,} in the case where 

I ( f lg )  - (fnlg)l < e, whenever n > N(e, g) (12) 

for all elements g, and this is obviously a type of number convergence. Convergence in 
the norm is sometimes referred to as "strong convergence", whereas convergence in the 
binary product is termed "weak convergence". Due to the relation 

I ( f l g )  - (fnlg)l < I ( f - f l g ) l  < I I f - f l l . l lg l l ,  (13) 

one sees immediately that strong convergence implies weak convergence, whereas a 
simple example shows that the reverse is not true. 

According to von Neumann, a linear space A = { f  } with a binary product 
satisfying axioms 1-4  becomes an abstract Hilbert space if it satisfies two more 
axioms: 
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axiom 5: 

axiom 6: 

It contains all its limit points in the norm. 

It is separable in the sense that it contains at least one enumerable set 
{h l, h 2, h 3 . . . . .  h . . . .  } which is everywhere dense in A = { f } ,  so that for 
every f t h e r e  is at least one hg so that Il f -  hkll < e. 

Some authors have claimed that the last axiom is o f  only marginal importance in 
theoretical physics and mathematical chemistry, but in reality it is o f  major  value, also 
for the applications. A set B = {~o) is said to be orthonormal if  it satisfies the two 
conditions IIq~ll = 1 and (q~l~o') = 0, and axiom 6 shows that any such set must  neces- 
sarily be enumerable. If  one starts out from the enumerable set { h 1, h 2, h a . . . . .  h . . . .  }, 
and applies Schmidt's successive orthonormalization procedure, one obtains an ortho- 
normal set B = {q~«} which is complete in the sense that, if  (gl  q~«) = 0 for all k, then one 
must have g = 0, i.e. there are no functions g ¢ 0 outside the set that are orthogonal to 
the functions in the set. Hence, axiom 6 ensures the existence of  at least one complete 
orthonormal set ~o = {tpk}. 

Next,  we will show that the set ~o = { tpk} spans the abstract Hilbert  space in the 
sense that there exists an expansion theorem of  the form 

f =  lim ]~ q~«(~0klf)= ~'. tpk(tpklf), (14) 
n " ~ ~ k = l  k=l  

which is convergent in the norm. For this purpose, we will consider the sequence 

n 

rn = f -  ~ qgk(q~«lf), (15) 
k = l  

for n = 1, 2, 3 . . . . .  Using the orthonormality property of  the set tp = { tpk } , one obtains 
immediately 

rl 

{Im Il 2 = ( f l f ) -  ff'~ [(~oklf)l 2 > O, (16) 
k = l  

which is the famous Bessel inequality, which indicates that the series 

I(tPk If) l  2 
k = l  

is always number  convergent. Hence,  one has 

m 

II rm - rn II 2 = ]~ I(q~k If)l  2 < e, whenever  m > n > N(e), 
k = n + l  

(17) 

(18) 
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which implies that {r} is a Cauchy sequence which uniquely def'mes a limit point in 
the norm r: 

r = f -  ~ tpk(~Ok[f). (19) 
k = l  

However, since ( r l  q~k) = 0 for "all k, and weak convergence follows from strong con- 
vergence, one also has (rl  ~ok) = 0 for all k, which means that r = 0 as a consequence of 
the completeness of the orthonormal set q~ = {q~k}" Hence, the expansion theorem (14) 
is proven. Letting n go to infinity in relation (16) one also obtains 

( f l f )  = ~ I((0klf)l z, (20) 
k = l  

which is Parseval's first relation, which is number convergent. We note that the 
relaüons (14) and (20) each may be used as alternative definitions of  the concept of 
completeness for orthonormal sets. 

2.3. MAPPINGS AND OPERATORS 

I fA = {f}  and B = {g} are two sets in general, one says that any pairing of the 
elements [f,  g] defines a pairwise relation. If, for a given f, the second element g is 
unique, one often speaks of a mappingf--+ g, and one says that g is the image of  the 
element f. In the case where one has f <---~ g, one speaks of a one-to-öne mapping, and 
we note that, since the time of Cantor, this idea forms the basis for the concept of  
cardinality and the set theory of the integers 0, 1, 2, 3 . . . . .  and the transfinite numbers 
~0' ~~ . . . . .  etc. One frequently says that a mapping f - -+  g is described by an 
operator T, and one writes Tf = g. 

If { f } is a linear space, one says that T is a linear operator, if it preserves the 
linearity of the space, so that T( f l .a  1 +f2" •2 ) = T(fl)'°tl + T(f2)'a2" If the space {f}  
has a binary product ( f lg ) ,  which satisfies axioms 1-4, one says that Thas the adjoint 
operator T t defined through the relation 

(f lTg) = (T' f  Ig), (21) 

and one obtains immediately the rules (T 1 • a 1 + T 2. ~)*  = (Tl)i. a7 + (T2)*. a;, (T1.Tz)* 
= (T2)* (T~)*. Finally, i fA = {f} is an abstract Hilbert space, one says that the operator 
T is defined on the domain D(T) consisting of the elements j'; if b o t h f  and its image Tf 
are elements of the Hilbert space. 

Let us now consider some simple examples of operators working on the abstract 
Hilbert space. We note that Dirac considered the bracket (alb) as the scalar product of  
a bra-vector (al and a ket-vector Ib), and he then defined the ket-bra operator 
T = [b) (al through the relations 
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T = Ib) (al, Tf= b (alf).  (22) 

Using the def'mition, one obtains immediately the theorems 

T t = l a ) ( b l ,  TZ=(alb)T, T r T = ( a l b ) ,  (23) 

where the symbol Tr (=Trace) indicates the sum over all the eigenvalues of the operator 
T, which has a single non-vanishing eigenvalue ~ = (alb), which is easily seen to be 
non-degenerate. The use of brackets ( , )  to denote binary products was introduced by 
the mathematicians long before Dirac, but we note that they preferred to have the first 
position linear;, hence, one has the connection (b, a) - (alb). Instead of Dirac's ket-bra 
operator Ib) (al, they used the dyadic product operator with the notation (.,a)b. In 
reading the mathematical literature, it is therefore worthwhile to remember the 
connection formulas 

(b,a) - (alb), (.,a)b = Ib)(al.  (24) 

2.4. OPERATOR CONVERGENCE 

Let us now consider the space B = {T} formed by all linear operators T defined 
on the abstract Hilber~ space A = { f }. Let us further consider an infinite sequence 
T 1, T 2, T 3 . . . . .  T . . . .  of such operators. Such a sequence is said to have a limit 
element T, if 

I l (T-  T ) f l l  < e, whenever n > N(e,f),  (25) 

and it is obvious that such an operator convergence can be of a point-by-point type for 
the individual elements f o r  uniform, when N(e,f)  does not depend on f. It should be 
emphasized that, in mathematics, there are many more definitions of the concept of 
"operator convergence", but also that the definition (25) is the most convenient one for 
our present purposes. 

In the field of mathematical chemistry, one says that an operator O is an ortho- 
gonal projector of order g, if it satisfies the relations 

0 2 = O ,  O t = O ,  T r O = g .  (26) 

In such a case, the operator P = 1 - O is said to be the projector for its orthogonal 
complement, and it satisfies the relations 

p2=p ,  p t = p ,  T r P = o o .  (27) 

We note that the relation 1 = O + P forms a trivial example of  a "resolution of  the 
identity operator l". A projector having g = 1 is sald to be a primitive projector, and a 
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simple example is given by the ket-bra operator O k = Igo~)(q~kl. Next, we will consider 
the sum of n such primitive operators: 

n 

Q~ = Ok = ~ I¢Pk)(q~kl- (28) 
k = l  k = l  

Using the orthonormality property of the set ~o = { ~o«}, one obtains directly the relations 

2 _  t Q/,-Q,,, Q~=Q,,, T r Q n = n ,  (29) 

and Q is hence an orthogonal projector of order n. We will further consider the projector 
P = 1 - Qù for its orthogonal complement, which satisfies the relations 

/'nE = P ,  Pn t = P ,  Tr P = ~.  (30) 

Let us now once more consider the remainder r in the expansion theorem, which is 
defined by relation (15). One obtains directly 

Æ n n 

rn = f -  ~_~ q~k(~oklf)=f - ~ O k f =  (1-- ~ O k ) f = ( 1 - Q m ) f = P n f ,  
k = l  k = l  k = l  

(31) 

and further 

IIrn Il 2 = I1(1 - Q ~ ) f l l  2 = IIP~fll z = (Pnf lPnf)= ( f l  P~P,,If) 

n 

= ( f lP, , I f )  = ( f l l  - Q~lf)  = ( f l f ) -  ~ (fl~pk) (tPklf) + O, 
k = l  

(32) 

where, according to relation (20), the right-hand member goes to zero when n goes to 
infinity. Hence, one has the relation 

lim II (1 -Q~)f l l  - 0, (33) 
n ---~, ex, 

which implies that the operator sequence Ql' Q2, Q3 . . . . .  Qn . . . .  converges to the 
identity operator 1, and obtains the following resolution of the identity: 

1 = lim Qn = ~ I~0k ) (qgkl, (34) 
n ---) ,~ k = l  

where the sequence {Qn} is operator convergent. It is evident that this is a necessary 
and sufficient condition for the completeness of the set ~o = { ~0k}. 

A convenient tool in mathematical chemistry is the use of boldface symbols for 
rectangular matrices: column vectors, row vectors, quadratic matrices, etc. If  A and B 
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are two rectangular matrices of order m x p and p x n, then their product C = AB is a 
matrix of order m x n having the elements Ckt = Y.ctAkaBal , where one has multiplied 
the rows of the first matrix in order with the columns of the second matrix. Using thäs 
short-hand, one can write the orthonormality property of the set ~p = {~ok} and its 
completeness in terms of the two conditions: 

(tpl~o) = 1, 1 = I~p) (~ol, (35) 

where 1 is the unit matrix. One may use the second relafion (35) as a strict rule, if one 
observes that the operator convergence is changed into other types of convergence 
depending on the circumstances. One has, for example, 

f =  1 . f = l q ~ ) ( ~ o l f ) =  ~ ~Pk(¢Pklf); 
k = l  

o o  

( f l f )  = ( f l l l f )  = ( f l  ~o) (q~lf) = ~ ( f l  ¢P« ) (~ok I f ) ;  
k = l  

o ~  

( f l  g) = ( f l l l  g) = <fl ~o) (~Pl g) = ~ ( f l  ~ok) (~okl g); 
k = l  

(36) 

(37) 

(38) 

where relation (36) is convergent in the norm, whereas relations (37) and (38) are 
number convergent. Similarly, i f f i s  an element in the domain D(T) of the operator T, 
one obtains 

Tf= 1 • T .  1 . f =  I~o)(@Tl ~p) (q~lf = ~o(~lTI q~) (~Plf) 

= q~T(¢plf)= ~ qhTkt(q~tlf), (39) 
k,l= l 

which relation is convergent in the norm. Here, we have used the matrix notations 

T = (tplTIcp), Tkt = (tp«lTl~). (40) 

For the operator T itself, one further obtains 

o o  

T =  1 - T .  1 =I~p><~plTI cP><¢Pl =l~o)T<~ol = ~ ICpk>Tkz(~Pzl, 
k , l= l  

which relation is operator convergent. If one introduces the notation 

(41) 

Ptk= I~°k) (~1, (42) 

one gets the expansion 
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T =  I¢pk)Tk/(qhl = ~ TklPtk, (43) 
k,l=l k,l=l 

and one realizes that every linear operator T is expandable in terms of its matrix 
elements and the fundamental operators P/g, which apparenüy span the operator space 
{ T} and form some form of bas/s in this space. The operators Ptk are someti_mes referred 
to as the fundamental units of the operator space, and we note that they saüsfy the 
product formula 

Pj~ ~r~ = ~,~ P~' (44) 

which teils us - among other things - that the diagonal units are projectors of order 1, 
whereas the non-diagonal units are nil-potent of order 2. At this point, it is convenient 
to introduce a binary product in the operator space B = {T} through the relation 

{Tl I T2 } = TrTltT2 = ~ (¢Pk IT11 ¢Pt)*(tPk I T21 ip/>, (45) 
k = l  

which is of  Hilbert-Schmidt type, and it is then easily verified that the fundamental 
units {Pt«} form an orthonormal basis in the operator space, which is also complete. The 
operators T having a finite norm IITII = {TIT} lr2 form again an abstract Hübert space, 
which will be referred to as the abstract Hilbert-Schmidt space. 

The operators T are mappings of the elements in the space A = { f } ,  which is 
often referred to as the carrier space for these operators. In the same way, one may 
consider the mappings ~Qof the operators T, which are sometimes referred to as super- 
operators. The superoperators ~Q have the operator space { T} as their carrier space, and 
of particular impor~ance in mathematical chemistry is the Liouvillian super-operator £ 
and the super-evolution operator S, which are defined through the relations: 

f_,T = H T -  TH, S T  = STS -~, (46) 

where H is the ordinary Hamiltonian and S is the conventional evolution operator 
S = exp{( -2m/h)H( t - to)  }. For further details as to the theory of superoperators and 
their use in mathematical chemistry, the reader is referred elsewhere [3]. 

We note that all formulas (35)-(44) are valid in the abstract Hilbert space and 
that we - so far - have not defined the binary product ( f t g )  we are using. 

2.5. REALIT, ATIONS OF THE ABSTRACT HILBERT SPACE 

A characteristic feature of modern mathematics is that one tries to develop 
deductive theories, which are as content-less as at all possible, by using a number of 
undefined quantities which later may be given different types of realizations giving rise 
to different models of the abstract theory. In the theory of the abstract Hilbert space 
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A = { f  }, the main undefined quantities are the elements f o f  the space and the binary 
product ( f l  g), and we will now consider some realizations of these concepts, which are 
of essential importance in mathematical chemistry. 

The oldest realization is the sequential Hilbert space 9-~, in which the elements 
f a r e  infinite column vectors c = {c k} with the property that 

~, Ickl 2 < oo (47) 
k = l  

In this space, one starts by defining the binary product through the relation 

(c]d)  = c*d = cj, dk, (48) 
k = l  

and this means that one has now to show that axioms 1-6  for the abstract Hilbert space 
are now satisfied as theorems. Once this is accomplished, one can conclude that all other 
theorems in the theory of the abstract Hilbert space are automatically valid. 

In another important realization of A = { f }, the e lementsfare  wavefunctions 
= ~t'(X) for a many-particle system with the composite coordinate X = (x 1, x 2, 

x 3 . . . . .  XN), where each x k is a combined space-spin coordinate x k = (r k, ~'k), which are 
absolutely quadratically integrable, so that 

SIW(X)I2 dX < ,o, (49) 

where the meaning of the integration sign J'dX is that one integrates over all the 3N space 
coordinates r k and sumes over the N spin coordinates (k" In this case, one starts by 
defining the binary product through the formula 

( ~ 1 1 ~ 2 )  = f~IJ1 (X)*~2 (X)dX.  (50) 

It is clear that axioms 1-4 are immediately valid as theorems, but that axioms 5 and 6 
will require a more careful consideration. In fact, if the integration is def'med as a 
Riemann integration, they are usually not valid, whereas it may be shown that they are 
true if one instead uses the more general integral concept introduced by Lebesgue in the 
early 1900's. Since the Lebesgue integration is essential, one often refers to this reali- 
zation of A = { f } as the L 2 Hilbert space. 

In this model, orte may also use a continuous representation of certain operators 
T by means of their kernels T(XIX'), introduced through the relation: 

TW(X)  = f T(X IX' )W(X')dX" (51) 

That such a representation exists follows from formula (39), which in this case takes the 
form 
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e,o 

r v  = E ekr«,(e, l v )  = Y. ekrkz I e , ( x ' ) ' v ( x ' ) d x ;  (52) 
k , l=  l k , l=  l 

hence, one has for the associated kemel  

T(X ]X') = ~ ¢p«(X)T«l ¢pt(X')*, (53) 
k , l=  l 

and it may then be shown that, for certain types of operators, the series is point-by-point 
convergent in the (X, X')-space. The identity operator 1 is represented by the unit 
matrix 1, and - in order to provide it with a kernel - Dirac introduced his famous S- 
funcüon fi(X - X'), so that orte obtains 

t& (X)t& (X ")* = ~ X  - X '). (54) 
k = l  

This series is not convergent in the sense of any of the definitions given above, and 
- in order to give it a strict meaning - o n e  has to go over to the theory of  the distribution 
functions. It is claimed that Dirac's S-function is of particular importance in the treat- 
ment of scattering problems, e.g. in the theory of chemical reactions, and that it is 
necessary in order to obtain a reasonable "normalization" of the eigenfunctions in the 
continuum. For this reason, we will now briefly review the underlying eigenvalue 
problem. 

2.6. THE BOUNDARY CONDITIONS IN THE TREATMENT OF THE EIGENVALUE PROBLEM 
OF THE HAMILTONIAN H 

In Schrödingefs wave mechanics, the time-independent equation for the 
stationary states has the form 

HW = EW, (55) 

where H is the classical Hamiltonian with the momentum vector Pc replaced by the 
operator (h/2m)(3/3xk, 3/3yk, 3/3zk). Equation (55) is a partial differential equation of  
the second order in 3N variables, and it certainly has solutions for all values of the 
energy parameter E - real or complex. However, only a selected number  of E-values are 
of  physical interest, and they correspond to solutions W = W(X) which satisfy certain 
physical natural boundary conditions. The so-called closed states associated with 
discrete E-values correspond to eigenfunctions ~P(X) which are absolutely quadratically 
integrable and which, therefore, belong to the L2-Hilbert space. On the other hand, the 
eigenfunctions ~P(E, X) of  the scattering states are not absolutely quadratically inte- 
grable, and they are instead characterized by the fact that their absolute value I W(E, X) I 
is finite almost everywhere; as a riffe, they äre associated with continuous E-values 
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forming one or more intervals on the real E-axis. These boundary condiüons are usually 
enough to render the spectrum {E} of the system under consideraüon. 

Since the L 2 methods are fundamental in solving the eigenvalue problem (55), it 
is, of  course, a disadvantage that the eigenfunctions in the continuum are not directly 
related to the L 2 space. However, this problem can be removed by using an alternative 
def'miüon of the boundary conditions for the scattering wave funcüons W: 

tp ~ L 2, W ( E ) -  d ~ ( E ) ,  • E L 2, (56) 
dE  

which implies that ~P is a derivative - in the sense of Lebesgue - of  an element • which 
belongs to L E. This definition implies that one has a limiting procedure: 

O ( E  + 1/n)  - O(E)  
W ( E ) =  lim = lim Wn(E),  (57) 

where tP(E) e L z. This result implies that 

I W ( X , E ) -  qsn(X,E)l < e, whenever n > N ( e , X ) ,  (58) 

which again implies that one has a non-uniform point-by-point convergence in the 
absolute value. Hence, the scattering wave function W(E) is a limit point of  the L 2 
Hilbert space, not in the norm but in absolute value in the sense of (58). 

To inustrate the validity of this approach, for a moment we will consider the 
momentum operator p = (h /2~)O/3x  as an example. The eigenvalue relation 

p ~ =  Xgt (59) 

has the formal solution ~ = A exp[(2a'i/h)2'x] for all values of 2' which are real or 
complex, but it is always outside L z. The  absolute value I v/I will remain finite, if and 
only if the parameter 2' is real. One further has the two relations 

tip(2,) = ~ ~lz( ~, ) d 2, = A 
0 

exp[(2~r i /h)2"x]-  1 

(27ri]h)x 
; (60) 

~ ~ ( 2 ' ) 1 2  = (h/2rc)2[A[2 2 ( 1  - cos(27r /h)Xx}  
x 2 

(61) 

which indicate that 0(2') belongs to the L2-space if and only if _oo < 2' < +oo. Hence, 
the spectrum {2'} is continuous, filling the entire real axis. 
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The validity of  this approach is essential, since it implies that one may use all the 
ordinary L 2 methods not only for studying the discrete closed states, but also for treating 
the scattering states in the continuum. In using the Rayleigh-Ritz method by means of  
a finite basis of  order M, all of  the M approximate solutions are in L 2, but some of them 
correspond to approximate discrete eigenvalues and some of them to appmximate 
continuous eigenvalues. If the number M is increased, the former show a great deal of  
stability and converge slowly to the exact discrete eigenvalues, whereas the latter 
change more quickly and tend to give the best approximate scattering funcüons expres- 
sible in terms of the finite basis under consideration. By studying the stability of  the 
approximate eigenvalues, one may even treat discrete eigenvalues which are embedded 
in the continuum. It is clear that, even if one understands the properties of the appmxi- 
mate eigenvalues rather weil from a practical point of view, much more research is 
needed in clarifying the mathemaücal convergence properties of the approximate eigen- 
values of the Rayleigh-Ritz scheme when M goes to infinity. 

However, if one is interested essentially in the low-lying discrete states, all these 
extra approximate scattering eigenvalues represent an unnecessary complication, and 
one is usually better off by using resolvent methods or parfitioning techniques [4] and 
by directly aiming at obtaining the discrete eigenvalues desired. Another advantage of 
this approach is that the characteristic equation is replaced by the reduced characteristic 
equation, which means that all multiple eigenvalues are reduced to single ones. On the 
other hand, if one is interested in a fixed specific scattering energy E in the continuum, 
one is better off by using, for example, the Hulthön-Kohn variational principle [5]. 

In concluding this section, we observe that - from the point of  view of  the 
"economy of thinking" - the theory of the abstract Hilbert space provides a marvellous 
tool since, if one has proven a theorem in this space, it is immediately valid also in all 
the realizations. 

2.7. COMPUTER CONVERGENCE 

This paper would be incomplete if we did not say a few words about the practical 
type of convergence which one meets in computational theoretical chemistry, particu- 
larly in connection with iteration procedures. For instance, in the HF-scheme and the 
MC-SCF method, a computation is said to be self-consistent if the numerical result with 
a specified number of significant figures does not change with further iterations and the 
iterations have converged on the computer. This definition implies that a series of 
numbers a v a 2, a3, a 4 . . . . .  a . . . .  becomes practically convergent when, for a specified 
fixed m, one has 

l a  + m - a l < e, whenever n > N(e). (62) 

This criterion goes over into mathematical convergence if and only if it is valid for all 
values of m. On the other hand, if it is valid only for m _<_ M, the sequence { a  } may very 
well be mathematically divergent[ A simple example is provided by the divergent series 
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~n(1/n). This result implies that, if a sequence {a} is computer convergent, one may 
never find out whether it is mathematicaUy convergent or not by means of a finite 
number of operations on the computer. In order to solve this problem, one thus has to 
carry out a careful mathematical analysis of the iteration procedure itself. This means 
that, at the same time as we in the future are frequently going to utüize the pmperües 
of "computer convergence", some research ought to be done as to the question of the 
true convergence of the iteration procedure. In this connection, it should also be 
remembered that sometimes strongly divergent procedures are very useful in deter- 
mining the solutions by considering the "point" from which the procedure diverges [6]. 
A typical example is provided by the Hartree-Fock method for some negative ions such 
as, for example, F- and C1-. 

3. Conclusions 

It is obvious that is does not take too much rigorous mathematics to treat the 
convergence problems occurring in the theory of the abstract Hilbert space and to apply 
them to the various realizations: the infinite vector space H 0, the L 2 space, and the 
Hilbert-Schmidt spaces built on these realizations. By accomplishing this goal, one 
may raise theoretical chemistry to a higher level of stricmess, whicla is certainly 
desimble. At the same time, one must remember that any violaüon of the rules of 
mathematics may not be used to improve the agreement between the theoretical results 
and the experimental experience, that improved stricmess does not necessarily imply 
improved results, and that good agreement with the experiments is a necessary but by 
no means sufficient criterion for the accuracy of the theory. In this paper, we have tried 
to show that, in theoretical chemistry, there are certainly many different definitions of 
the concept of convergence which are useful in a variety of mathematical methods and 
applications. 
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